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of high dielectric constant which has been discussed in Fig. 4.

Finally, for completeness, a somewhat different case is treated

in Fig. 6. The substrate again is of the plastic type with low

dielectric constant of t,= 2.35. The substrate thickness is now

h,= 0.79 mm. In contrast to the cases investigated before, the

width w, of strip 1 is kept constant at WI = 3h, which is equiva-

lent to a characteristic impedance of strip 1 of approximately 50

Q. With the width w, of strip 1 increased by a factor of 3

compared to Fig. 5, the gap capacitance Cg and the stray capaci-

tance C,l should be larger by about the same factor as is indeed

confirmed by inspection of the figures. The change-over of the

stray element C,, to inductive values does not occur in the range

of widths W2 examined in Fig. 6(b) due to the reduction of the

line inductance of line 1 with increased width, and as a result of

the larger line capacitance. Likewise, the pronounced capacitive

behavior of the structure is clearly visible from the relatively high

values of stray capacitance C,z in Fig. 6(c).

111. CONCLUSION

The elements of the equivalent pi-circuit of the asymmetrical

series gap in microstnp and suspended substrate lines have been

computed numerically for a wide range of geometries and two

representative substrate materials. The results show a behavior of

the asymmetric gap which is different from the case of equaf

widths of the involved strips and which is seen to tend towards

that of the impedance step if end-to-end coupling between the

strips is tight. Physical understanding, agreement with the results

of other authors for the case of equal widths, as well as the

asymptotic behavior and values of the computed equivalent cir-

cuit data confirm their validity. The information presented in

graphical form was not available up to now and is thought to be

useful for MIC design and measurement purposes.
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Evaluation of the Integrals Occurring in the Study of

Circular Microstrip Disk

KOHEI HONGO AND MASARU TAKAHASHI

Abstract — We have derived rigorous series expressions for the integrals

which appear in the study of a circular microstrip disk separated from the

grounded dielectric substrate when the problem is formulated by the

method of dual integral equation or using Kobayashi potentials. The

validity of the approximate expression of the integrals for small separation

is verified numerically.

I. INTRODUCTION

Recently, the electrostatic problem of a circular parallel plate

condenser filled with dielectric has been of interest again because

it has application as components of microstrip and antenna

circuits. Bokar and Yang [l] studied this problem using the dual

integral equation, and shortly later, Chew and Kong [2], starting

from a similar approach, have derived the limiting values of

capacitance as the separation approaches zero. The method of

dual integral equation is closely related with the method

of Kobayashi potentiaf [3] developed by Kobayashi and Nomura

[4]. The basic idea of these methods is to reduce the problem to a

set of linear equations, and the crucial point of the methods is to

calculate the matrix elements which are given by infinite in-

tegrals, including Bessel functions, as integrands. An analytical

calculation of these kinds of integrals was first carried out by

Nomura associated with a circular parallel capacitor located in an

empty space [5]. But it is found that his result was incomplete,

although his approach is very general. Recently, Chew and Kong

[2] met with similar integrals which give matrix elements and

tried to derive approximate solutions using much mathematical

manipulation. However, their calculation was restricted to the

first two terms of the power series expansion of the integrals.

The purpose of this article is to show that the infinite integrals

can be calculated analytically through a rather straight-forward

manner, which are valid for both large separation and small

separation. When the separation is very small, approximate ex-
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plicit expressions up to order q4 are presented. It is found that

the approximate expression truncated after the first two terms for

diagonal elements gives a precise result even for a rather large

separation, while the range of the validities of the approximate

solutions for off-diagonaf elements is very restrictive. So it seems

to be difficult to derive an explicit asymptotic expression for the

capacitance using the present or a related approach.

II. EVALUATION OF THE INTEGRALS

As shown in Bokar and Yang [1] or Chew and Kong [2], the

potential for a circular microstrip disk of radius a separated from

a ground plane by a dielectric material with relative permittivity

c, is given by

“exp[--ld’
Forz>dand for O<z<ditis givenby

(1)

(2)

where q = d\a (d: separation of disk from ground plane) is a

normalized separation of a disk which is charged to potential P’,

and C($, q) = [sinh(qf)+ c,cosh(q$)]–’. In this method, there is

a freedom for choice of the value ICas described in the literature

[1], [2]. When the separation is small, it is convenient to choose
IC= 1, Expansioncoefficients A ~ are determined from an infinite

system of linear equations

cc

~ K(2n+l,2n? +l; c,).4m=En (n=o,l,2,.. ) (3)
~=o

tion from simple poles is missing, so we will here recalculate the

above integral. Substituting series expression for the product of

two Bessel functions and carrying out the integration term by

term, we get

H(p, v;x)=;

“[;O (2X)
(-1) ’F(p+V+2~-l)r(p +V+2[+l)

‘+u+’’-’~!r(p +~+l)r(v +~+l)r(p+v+~+l) “

(7)

This series is found to converge for x >2. Hence, (7) gives a

series solution of the integrals for large separation. The expres-

sion which is valid for x less than 2 can be derived as follows.

The above equation is transformed into a contour integral given

by

H(p, v;x)=+
2 ‘lrJ

J
. Ju3 r(–t)r(p+v +2t–l)r(p+ V+2t+l)di

–Jm (2X) ‘+v+z’-’r(p +t+l)r(v +t+l)r(p+t+l)l)”

(8)

The contribution from the pole in the right-hand side of

complex ~-plane gives (7), while the contribution from the poles

in the left-half plane gives the desired expression which is valid

for x <2 [6]. It is readily found that simple poles are at t = – (p

+v–1)/2 and t=–(p+v)/2–l (1=0,1,2,...,l vlv2),),

while double poles are at t= –(p+v+l)/2– 1 (1= 0,1,2, ...).

The residues at these poles are given by

sin
[

p–v–l
??

H(p, v;x)=:
)

–fia,p-+(-l)
lp–v/2
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( )(
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2
–~+l)r(2~+2)r(2[)

(
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:

(

{(

~+v+l+l
–4 .2

I=or p–v+l

)(

V—p+l
–[r2

1(

_l r P+;+l

1
–1 r(21+3)r(2~+l)

)

2

-+(~-; +’-l)-+( v-:+l-l]-+(~+; +’ -1)-210g2x+2+(2 /+3)+2*(21+1)] (9)

where
where +(x ) = d r( x )/dx is the di-gamma function.

J.(&) J.,($) dt
Using the function defined by (6), the matrix elements given in

K(n, m;c) = ~mG(&, q)sinh(q&) ~, (4) (4) can be derived as follows. K(iz, m: c) can be expressed as

The capacitance of the disk is shown to be obtained from the
=*,~o(- P) ’{ H[n, m;21q]- H[n, m;(21+2)q

expression C = com-aAo/ V.

As a preliminary step to obtain the expression for K( n, m; c.)

}

10)
we consider integral d~fined by

where P = (E, — I )\(c. + 1). As a special case of parallel capacitor

cc J//(.$)Jv(&)
H(p, v;x)=j ~,

in an empty space, K( n, m; co) simplifies to
exp(–x$)d$. (6)

o K(n, wz; eo)=~[H(n, m; O)- H(n, mz;2q)]. (11)

The solution for the integral has been derived by Nomura [5], For small q, the approximate expressions for K( n, m; co) are

but his result seemed to be incomplete for a part of the contribu- readily derived using (9). The expansions up to order q4 for small
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separation are given by

K(2n+l,2?n +l; co)=& @nm-(-l)m\””
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For rather large values of q, we should return to the series

expression given by (9) and (11), which are convenient for

numerical calculation using an electronic computer. The validity

of approximate expressions for K(2 n + 1, 2 m +1; c~) is verified

numerically. In Fig. 1, we present numericaf results of K(2 n + 1,

2 m + 1; CO) for rather small order (n, m ) when they are ap-

proximated by the first two terms (solid line) and by the first

three terms (dotted line). The corresponding exact results are

shown by broken lines. From these figures it is found that the

approximate expressions truncated by the first two terms and by

the first three terms for diagonal elements give precise results

even for rather large values of q, while those for off-diagonaf

elements depart from the exact results for very small values of q,

though the range of q in which the first three terms approxima-

tion is valid expand compared with that for the first two terms

approximation. So, for off-diagonal elements we must rely on

rigorous series expressions given @ (9) and (1 1), or on numericaf

integration instead of the approximated expansion even for very

small values of q.

The expression of K(2 n + 1, 2 m + 1; c) when the capacitor is

filled with arbitrary dielectrics can be calculated using (10). The

approximate expansion of K(2 n +1, 2 m +1; c) for small q could

be derived similarly, though we are required to carry out one

more summation. Chew and Kong have derived the first two

terms of K(2 n + 1, 2 m + 1; c) for small q using a quite different

mehod. But, as mentioned above, we prefer to calculate directly

from (9) and (10) for any values of q practically.

A numerical calculation for capacitance based on the series

expression for K( m, n, c) given in (10) is carried out”’ for c.= 1

and t,= 2.65. The results are shown in Table I with those by

other methods. Results for column 1 and 2 represent the calcu-

lated results by the present method taking into account 1 and 10

unknowns AR, respectively. Column 3 shows the results calcu-

lated from another expression drived from (1) and (2) with
IC= 1/2. Columns 4–6 show the results borrowed from the paper

by Chew and Kong. It is noted from the tables that one-term

approximation, in which A ~ is determined from A ~ =

E. /K( 1,1, c) in (3), gives surprisingly accurate results even for a

large separation if K(l, 1, c) is calculated exactly. The error of

one-term approximation is roughly 10% for large separation of

d/a = 1 independent of dielectric constant of substrate. The

numerical results for a very small separation seem to be new.
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(b)
We have derived a rigorous series expression for the integrals

which appear in the study of a circular parallel capacitor when

the problem is formulated by the method of dual integral equa-

Fig. 1. Validity of approximate expressions for K( n, m; c ~ ). The broken lines

are corresponding exact solutions. (a) K(1, l; CO), K(I,3; co), K(I,5; CO). (b)

K(3,3; ,.), K(3,5; co), K(5,5; co).
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,=fbstract —An experimental stody of the distribution of the electric field

induced inside a finite circular cylinder of water illuminated by an ap-

proximately plane electromagnetic wave is presented. The incident field

was generated by using a monopole above the ground plane with a 90°

corner reflector. The cylinder of water included a thin conducting tube at

its center to shield the transmission lines leading to the probes. The graphs

of selected measured distributions are displayed and interpreted. The

measurements were earned out at 100, 300, and 600 MHz. The conductiv-

ity of the 50-cm long column of water was varied from approximately zero

to 3.5 S/m. Both the amplitude and the phase of the induced electric field

were measured in the experiment. Comparisons with a new theoretical

solution developed by the authors are also included.
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I. INTRODUCTION

The interaction of electromagnetic radiation with a finite di-

electric body is a problem of considerable practical interest. Such

an investigation is of importance, for example, in the assessment

of the biomedical hazards of EM radiation, the study of antennas

attached to dielectric or poorly conducting aircraft, and the use

of transponders embedded in biological organisms. The major

focus of research in this area has been on the development of

numericaf solutions of EM-field problems involving three-dimen-

sional bodies [ 1]–[5]. On the expenmentaf side, thermaf probes

[6], [7] have been employed successfully to determine temperature

1.64

1.80

1.97

2.15

2.33

2.52

2.72

1.6533

1.8100
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2.2873

2.4491
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tions or using Kobayashi potentials. The solutions for the in-

tegrals consist of two expressions in which one is valid for large

separation and another for small separation. Using the series

expressions derived here, the potential problem of circular paral-

lel capacitor can be readily calculated. The integrals which occur

in the study for line capacitance of parallel strip lines [7] can be

performed using the present method and the result will be

published in a forthcoming paper.
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