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of high dielectric constant which has been discussed in Fig. 4.

Finally, for completeness, a somewhat different case is treated
in Fig. 6. The substrate again is of the plastic type with low
dielectric constant of €, =2.35. The substrate thickness is now
h;=0.79 mm. In contrast to the cases investigated before, the
width w; of strip 1 is kept constant at w, = 34, which is equiva-
lent to a characteristic impedance of strip 1 of approximately 50
Q. With the width w, of strip 1 increased by a factor of 3
compared to Fig. 5, the gap capacitance C, and the stray capaci-
tance C,; should be larger by about the same factor as is indeed
confirmed by inspection of the figures. The change-over of the
stray element C;; to inductive values does not occur in the range
of widths w, examined in Fig. 6(b) due to the reduction of the
line inductance of line 1 with increased width, and as a result of
the larger line capacitance. Likewise, the pronounced capacitive
behavior of the structure is clearly visible from the relatively high
values of stray capacitance C,, in Fig. 6(c).

III. ConcLusiON

The elements of the equivalent pi-circuit of the asymmetrical
series gap in microstrip and suspended substrate lines have been
computed numerically for a wide range of geometries and two
representative substrate materials. The results show a behavior of
the asymmetric gap which is different from the case of equal
widths of the involved strips and which is seen to tend towards
that of the impedance step if end-to-end coupling between the
strips is tight. Physical understanding, agreement with the results
of other authors for the case of equal widths, as well as the
asymptotic behavior and values of the computed equivalent cir-
cuit data confirm their validity. The information presented in
graphical form was not available up to now and is thought to be
useful for MIC design and measurement purposes.
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Evaluation of the Integrals Occurring in the Study of
Circular Microstrip Disk

KOHEI HONGO aNnD MASARU TAKAHASHI

Abstract —We have derived rigorous series expressions for the integrals
which appear in the study of a circular microstrip disk separated from the
grounded dielectric substrate when the problem is formulated by the
method of dual integral equation or using Kobayashi potentials. The
validity of the approximate expression of the integrals for small separation
is verified numerically.

I. INTRODUCTION

Recently, the electrostatic problem of a circular parallel plate
condenser filled with dielectric has been of interest again because
it has application as components of microstrip and antenna
circuits. Bokar and Yang [1] studied this problem using the dual
integral equation, and shortly later, Chew and Kong [2], starting
from a similar approach, have derived the limiting values of
capacitance as the separation approaches zero. The method of
dual integral equation is closely related with the method
of Kobayashi potential [3] developed by Kobayashi and Nomura
[4]. The basic idea of these methods is to reduce the problem to a
set of linear equations, and the crucial point of the methods is to
calculate the matrix elements which are given by infinite in-
tegrals, including Bessel functions, as integrands. An analytical
calculation of these kinds of integrals was first carried out by
Nomura associated with a circular parallel capacitor located in an
empty space [5]. But it is found that his result was incomplete,
although his approach is very general. Recently, Chew and Kong
[2] met with similar integrals which give matrix elements and
tried to derive approximate solutions using much mathematical
manipulation. However, their calculation was restricted to the
first two terms of the power series expansion of the integrals.

The purpose of this article is to show that the infinite integrals
can be calculated analytically through a rather straight-forward
manner, which are valid for both large separation and small
separation. When the separation is very small, approximate ex-
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plicit expressions up to order g* are presented. It is found that
the approximate expression truncated after the first two terms for
diagonal clements gives a precise result even for a rather large
separation, while the range of the validities of the approximate
solutions for off-diagonal elements is very restrictive. So it seems
to be difficult to derive an explicit asymptotic expression for the
capacitance using the present or a related approach.

II. EVALUATION OF THE INTEGRALS

As shown in Bokar and Yang [1] or Chew and Kong {2], the
potential for a circular microstrip disk of radius a separated from
a ground plane by a dielectric material with relative permittivity
€, is given by

= 5 al )ate. e

'exp[—zz—dé] d¢. (1)

For z>d and for 0 <z<(d it is given by
— < «° 2n+lc(€) z
_EOAJO o £8)G (&, q) 222 sinh  28) 4t (2)

where ¢ =d /a (d: separation of disk from ground plane) is a
normalized separation of a disk which is charged to potential V,
and G(£, g) = [sinh(g§)+ ¢,cosh(qé)] "' In this method, there is
a freedom for choice of the value x as described in the literature
{11, [2]. When the separation is small, it is convenient to choose

=1. Expansion coefficients 4, are determined from an infinite
system of linear equations

e}
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tion from simple poles is missing, so we will here recalculate the
above integral. Substituting series expression for the product of
two Bessel functions and carrying out the integration term by
term, we get

H(p,vix)=5
3 (=D)'T(p+v+2[=D)T(p+v+21+1)
o )T T (A A DT HIEDT(p+ v +1+1)

(7)

This series is found to converge for x > 2. Hence, (7) gives a
series solution of the integrals for large separation. The expres-
sion which is valid for x less than 2 can be derived as follows.
The above equation is transformed into a contour integral given
by

1
H(M,V;x)zz—wj

/]oo F(—t)r(p.+V+2t_1)r(p,+1/+2t+1)dl
—so0 (2)" T T T (A t+ DT A DT (4 v +1+1)

(8)

The contribution from the pole in the right-hand side of
complex #-plane gives (7), while the contribution from the poles
in the left-half plane gives the desired expression which is valid
for x <2 [6]. It is readily found that simple poles are at t = —(p
+r—1)/2 and 1= —(p+v)/2—1 (I=0,1,2,---,|p—¥|/2),

S k(@2n+1,2m+1;¢,)4,, = E, (n=0,1,2,--+) (3) while double poles are at r= —(p+»+1)/2—1(I=0,1,2,---).
m=0 The residues at these poles are given by
. (p—v—1
sin § -————a
4 { 2 } X 1 lu—v/2
H(p,v;x)=— 58, — 2 (=1)
Tl ) (o)
[n— 7|
2 [J,+I/+l) ( 2 l)(2x)2[+1 |
3 ()= = - +3
1=1 r( a 1+1)r : —1+1)TQI+2)T(20)
» P(’”;’H Jrl)(zx)z’+2
1=0 r(’*—_—;i~1)r(%—1)r(ﬂi?i-z)r(zl+3)r(zl+1) 2
—xp(”‘T”H—/)—lp(%—l)ﬂp(Ei-;ll—l)—2log2x+2¢(2/+3)+2¢(21+1)} 9)
where where Y(x) =dT(x)/dx is the di-gamma function.
, T(E)J.( $) Using the function defined by (6), the matrix elements given in
K(n,m;e) = f G(&, q)sinh(g§) -2t (4)  (4) can be derived as follows. K(n, m: €) can be expressed as
¢’ .
0 sinh ¢4 Tn(§),(€)
0, n=1 K(n,m;e)= . d
E”_[V/Z =0 (5) ./(; sinh g€ + ¢,cosh ¢ ¢2

The capacitance of the disk is shown to be obtained from the
expression C=egmad, /V.
As a preliminary step to obtain the expression for K(n, m; €;)
we consider integral defined by
o J,()J,
H(p,vix)= [ Mexp(—xé)d& (6)
0 £°
The solution for the integral has been derived by Nomura [5],
but his result seemed to be incomplete for a part of the contribu-

1

=— I§O(~P)/{H[n,m;2lq]—H[n,m;(2l—|—2)q]}

(10)
where P = (e, —1)/(€,+1). As a special case of parallel capacitor
in an empty space, K(n, m; €,) simplifies to

K(n,m;ey)=%[H(n,m;0)— H(n,m;2q)]. (11)
For small g, the approximate expressions for K(n, m; €,) are
readily derived using (9). The expansions up to order ¢* for small
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separation are given by J
K(2n+1,2m+1;¢y) :ms,,m‘—(ﬂ)'”\ "

m+n
1"yt
I-1/2 %~ 1+1/2}

tm—n|

)

=1

2
L logg— 1 —
. {log4 log ¢ 2 1

—(=1)" "2 (1) (Im =) g+ (- 1)
fnsd){msrd) (s}

1 |n—m+1| —1|
- —5{ 2 + } 12 +log4

=1

|n—m

2

=1

m+r+2 m+n

+ 2+ 2

=1 =1

—Iqu+%]+O(q5).

For rather large values of ¢, we should return to the series
expression given by (9) and (11), which are convenient for
numerical calculation using an electronic computer. The validity
of approximate expressions for K(2n +1, 2m +1; €,) is verified
numerically. In Fig. 1, we present numerical results of K(2n +1,
2m+1; €,) for rather small order (n,m) when they are ap-
proximated by the first two terms (solid line) and by the first
three terms (dotted line). The corresponding exact results are
shown by broken lines. From these figures it is found that the
approximate expressions truncated by the first two terms and by
the first three terms for diagonal elements give precise results
even for rather large values of ¢, while those for. off-diagonal
elements depart from the exact results for very small values of g,
though the range of g in which the first three terms approxima-
tion is valid expand compared with that for the first two terms
approximation. So, for off-diagonal elements we must rely on
rigorous series expressions given in (9) and (11), or on numerical
integration instead of the approxnnated expansion even for very
small values of g.

The expression of K(2n+ 1, 2m +1; €) when the capacitor is
filled with arbitrary dielectrics can be calculated using (10). The
approximate expansion of K(2n +1, 2m +1; €) for small g could
be derived similarly, though we are required to carry out one
more summation. Chew and Kong have derived the first two
terms of K(2n +1, 2m+1; ¢) for small g using a quite different
method. But, as mentioned above; we prefer to calculate directly
from (9) and (10) for any values of g practically.

A numerical calculation for capacitance based on the series
expression for K(m,n, €) given in (10) is carried out for €, =1
and e, =2.65. The results are shown in Tablé I with those by
other methods. Results for column 1 and 2 represent the calcu-
lated results by the present method taking into account 1 and 10
unknowns A,, respectively. Column 3 shows the results calcu-
Iated from another expression drived from (1) and (2) with

=1/2. Columns 4-6 show the results borrowed from the paper
by Chew and Kong. It is noted from the tables that one-term
approximation, in which A4, is determined from A4, =
Ey/K(1,1,€) in (3), gives surprisingly accurate results even for a
large separation if K(1,1,¢) is calculated exactly. The error of
one-term approximation is roughty 10% for large separation of
d/a=1 independent of dielectric constant of substrate. The
numerical results for a very small separation seem to be new.

IIL
We have derived a rigorous series expression for the integrals

which appear in the study of a circular parallel capacitor when
the problem is formulated by the method of dual integral equa-

CONCLUSION
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TABLEI
CAPACITANCE OF MICROSTRIP CIRCULAR DIsk
e =1.0
! 1 2 3 6 | 5 J6s
d/a  one term| 10 terms | another NM SNA | ALB
| approx approx expression
K=1/2 i
0.01  1.0362 | L.0421 | ‘ f
0.02 ' 1.0651 | 1.0778 . i ‘ ;
0.03  1,0916 1 1.1110 1 i
0.04 ; 1.1168 | 1.1426
0.05 : 1.1411 } 1.1730 11,1756
0.06 : 1.1647 | 1.2026 {1.2052
0.07 | 1.1878 | 1.2315 |1.2342
0.08 | 1.2106 {1.2509 ' 1.2626
0.09 1.2330 % 1.2877 ,1.2905
0.1 ! 1.2552 | 1.3115 :1.3180 1.317 1.32 |1.20
0.2 i1.,4702 ; 1.5769  11.5800 1.580 :1.57 {1.32
0.3 1.6814 i 1,8265 }1.8300 1.830 1.82 11.40
0.4 '1.8935 12,0714 [2.0751 2.0751 2.06 '1.46
0.5 2.1075 ' 2.3142 12,3183 2.3183 2.32 51.50
0.6  :2:3239  2.5565 2.5608 }2.5607.2.59 '1.53
0.7 :72.5425 . 2,7988 12.8034 |2.8034 2.88 i1.55
0.8 2.7631 . 3.0415  '3.0464 3.0464 3.16 '1.57
0.9 2.9855 . 3,2850  i3.2901 _3.2901'3.45 1,57
1.0 3.2095 -13.5292  .3,5346 '3.5346 3.81 11.56
€ =2.65
1 2 I 3 4 5 6
d/a one term | 10 terms| another IS SNA ALB
approx approx expression
1 K=1/2
0.01 1.0179 %1.0210
0.02 1.0328 1.0404
0.03 1.0468 1.0590 '
0.04 1.0602  ©1,0769
0.05 1.0734  11.0945 . 1.0969
0.06 1.0862  ©1.1117  1.1142 ’
0.07 1.0989 11.1286  1.1311 |
0.08 11114 101456 1.1479 :
0.09 1.1239  11.1620  1.1645 ' ]
0.1 1.1362 11.1784 1.1809 1 1.180  1.18 1.14
0.2 1.2588 [1.3380  1.3408 1.341  '1.33 1.25
0.3 1,3836 §1.4943 11,4973 11,497  1.48 1.35
0.4 1.5127  '1.6502  1.6533 [1.6533 1.64 1.43
0.5 1.6463 .1,8066  1.8100 i1.8100 11:80 1.5
0.6 1.7839  1.9642  1.9678 l1.9678 :1.97 l1.59
0.7 1.9251  2.1232  2.1269 [2.1269 2.15 11.66
0.8 2.0692  }2.2835  2.2873 2.33 | 1.73
0.9 2,2158 12,4451  2.4491 252 11.80
1.0 2.3644 12,6081  2.6122 12,72 11.86

l i

tions or using Kobayashi potentials. The solutions for the in-
tegrals consist of two expressions in which one is valid for large
separation and another for small separation. Using the series
expressions derived here, the potential problem of circular paral-
lel capacitor can be readily calculated. The integrals which occur
in the study for line capacitance of parallel strip lines [7] can be
performed using the present method and the result will be
published in a forthcoming paper.
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The Measurement of the Electric Field Inside a Finite
Dielectric Cylinder Illuminated by A Plane Wave

R. BANSAL, R. W. P. KING, anD T. T. WU

Abstract — An experimental study of the distribution of the electric field
induced inside a finite circular cylinder of water illuminated by an ap-
proximately plane electromagnetic wave is presented. The incident field
was generated by using a monopole above the ground plane with a 90°
corner reflector. The cylinder of water included a thin conducting tube at
its center to shield the transmission lines leading to the probes. The graphs
of selected measured distributions are displayed and interpreted. The
measurements were carried out at 100, 300, and 600 MHz. The conductiv-
ity of the 50-cm long column of water was varied from approximately zero
t0 3.5 S/m. Both the amplitude and the phase of the induced electric field
were measured in the experiment. Comparisons with a new theoretical
solution developed by the authors are also included.

1. INTRODUCTION

The interaction of electromagnetic radiation with a finite di-
electric body is a problem of considerable practical interest. Such
an investigation is of importance, for example, in the assessment
of the biomedical hazards of EM radiation, the study of antennas
attached to dielectric or poorly conducting aircraft, and the use
of transponders embedded in biological organisms. The major
focus of research in this area has been on the development of
numerical solutions of EM-field problems involving three-dimen-
sional bodies [1]-[5]. On the experimental side, thermal probes
[6], [7] have been employed successfully to determine temperature
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